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ABSTRACT

In a free-electron laser with a long, linear wiggler, the external
focusing required to keep the electron beam from dispersing can seriously
degrade the performance of the laser. The transverse focusing modulates the
longitudinal velocity of each electron, periodically and non-adiabatically
changing the phase of the electron with respect to the electromagnetic wave.
Phase changes of order unity over a betatron period can strongly detrap or
debunch electrons and greatly reduce the gain of a linear wiggler amplifier.
The modulation of the electron's longitudinal velocity can be prevented if
focusing in the plane of the electron's wiggle motion is provided by para-
bolically curved magnet pole faces. The focusing and resonance effects of
curved pole faces are analytically calculated and numerically confirmed.
Numerical simulations of linear wiggler amplifiers are presented to illustrate

the effect of the curved pole faces on amplifier performance.

*Performed jointly under the auspices of the U. S. Department of Energy by
Lawrence Livermore National Laboratory under contract no. W-7408-ENG-48 and
for the U. S. Department of Defense under DARPA, ARPA Order No. 4856, Program
Code No. 3B10.



I. INTRODUCTION

The gain of a free-electron laser (FEL) depends critically on maintaining
a precise phase relationship between the wiggle motion of the electrons and
the electric field of the light. The electrons in a focused electron beam
undergo transverse oscillations (betatron oscillations) in the focusing
field. The oscillating transverse velocity can produce an oscillating
longitudinal velocity, and thereby affect the gain. In a long wiggler some
focusing is required; all electron beams have a non-zero spread in the angle
at which individual electrons propagate (i.e., a non-zero emittance) and will
eventually disperse in the absence of focusing.

In a helical wiggler, focusing in both transverse directions, x and y, is
provided by the wiggler itself. The wiggler magnetic field necessarily
increases away from the axis of the field; the spatial variation of the
magnetic field focuses the electron beam. In a linear wiggler of conventional
design, focusing is provided by the wiggler in only one of the transverse
directions, the direction of the wiggler magnetic field. External focusing,
usually provided by adding a quadrupole component to the field, is required in
the other transverse direction (the wiggle plane).

The natural focusing of the wiggler has the well-known (but nonetheless
curious) property that the longitudinal velocity of an electron, averaged over
a wiggler period, is not modulated by the betatron oscillations of the
electron. This property is described in detail in Sec. II. Natural wiggler
focusing therefore does not affect the phase of an electron's wiggle motion

with respect to the optical electric field. The only effect on the gain of
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the FEL occurs because of the intrinsic spread of transverse velocities in the
beam, and the only cure for that is to find a better quality beam. Quadrupole
focusing (and most other forms of external focusing) introduces an additional
problem; the longitudinal velocity, averaged over a wiggler period, is not
constant throughout the betatron orbit of an electron. The phase between
wiggle motion and electric field is periodically modulated by the betatron
motion. In a high-gain constant-wiggler amplifier, where the gain is accom-
panied by physical bunching of the electron beam, the phase modulation can
disperse the bunches, and reduce the gain. In a tapered-wiggler amplifier,
where the gain is produced by the coherent deceleration of electrons trapped

in ponderomotive potential we1ls,1

the periodic phase modulation can detrap a
significant fraction of the e]ectrons.2 The end result is that the difference
in performance between a conventional linear wiggler with quadrupole focusing
and the equivalent helical wiggler, for the same electron beam parameters, is
much greater than would be expected from only the Bessel function field-
particle coupling factor.3
Helical wigglers are, unfortunately, more difficult to build than linear
wigglers; a helical wiggler with an adjustable taper would be extremely
difficult to build. Furthermore, the linearly polarized light from a linear
wiggler is very much easier to handle, at high output powers, than the
helically polarized light from a helical wiggler. The purpose of this paper
is to point out that a slight modification to the design of a linear wiggler
can give the linear wiggler the focusing and resonance properties of a helical

wiggler, with none of the technical difficulties of the helical wiggler. The

modification consists of shaping the magnet pole faces with approximate
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parabolic curvature transverse to the electron beam propagation direction [as
done by Phi]]ips4 in 1960, in the Ubitron]. Parabolic curvature not only
focuses the electron beam (as Phillips recognized) but also preserves the FEL
resonance; the focusing and resonance properties are discussed in Sec. III.
The importance of focusing by parabolic curvature rather than quadrupoles is
illustrated with numerical simulations of a high-power, tapered-wiggler
amplifier and of a lower-power, constant-wiggler amplifier. The simulation
code and the results of a set of simulations with a) a helical wiggler, b) a
linear wiggler with quadrupole focusing, and c) a linear wiggler with focusing
by parabolic curvature, are described in Sec. IV,

The simulation code uses equations that describe particle motion averaged
over a wiggler period. In order to ensure that the analytical treatment of
focusing by parabolic curvature gives the correct focusing and resonance
properties, we have done other simulations of the electron orbits in a wiggler
without the average over a wiggler period. The results are described in

Sec. V, and confirm the analytical derivations.

IT. QUADRUPOLE FOCUSING IN A LINEAR WIGGLER

The magnetic field of an ideal linear wiggler is

2
mc A ~ :
B = e b0 [y cosh kwy cos sz - 2z sinh kwy sin sz] , (1)

where kw is the wiggler wavenumber, and the electron beam propagates in the
z-direction. The scaled field strength, bo, has dimensions of cm"1 in cgs

units. The wiggle motion is in the x-direction: the x - z plane is therefore

the wiggle plane.
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This field can be derived from a scalar potential

s (2)
bE~=—VX 2
~ ;Zf -

with
by
X =~ sinh k.y cos k z . (3)
w

Because the field and potential do not depend on x, there is no focusing

of the beam in the x-direction; in the y-direction, however, there is focusing

that can be approximately described by the harmonic oscillator equation.5
For the jth electron

" dzyj K 2 (4)

Yi =2 T *ay Y
with

b
gy = — , (5)
y ﬁYJ

where Y; is the electron's Lorentz factor.
The approximation used to obtain eq. (4) involves writing

kw2y2
cosh k y=1+ " . (6)

In the same approximation, the wiggle motion is

2.2
b0 kw yj
"o + J : .
X3 = ?F; 1 5 sin szj R (7)

the wiggle amplitude increases with y, as does By.
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The wiggler focusing in y has the important property that the longitudinal
(dimensionless) velocity 8, of an electron, averaged over a wiggle period,
remains constant in the electron's betatron orbit. For y > 1, B, << B, (and

dropping the index j)

8 2
1
B"’—'l——l—?——z— (8)
2y
but
~ b0 szy . ~ .
E} = X ?F; 1+ > sin sz ty ¥yt (9)

where y' is the transverse betatron velocity of the electron. (Betatron
motion in x is ignored here; we are only illustrating the properties of
wiggler focusing.) From eq. (4), we can write

Yy =¥, COs (k.. z+ ¢y) , (10)

By

where ﬁy is an arbitrary betatron phase, to obtain

2
b
2 0 2 2 2 .2
Bl = :2—'(——2-[1 + kW yB Ccos (kBy + ¢B,Y)] sin ka
w
2, 2 .2
+
Y kBy sin (sz + ¢8y) . (11)
Averaging over a wiggle period (sinzsz > 1/2) and using eq. (5) for kBy
yields
0
8 - - (L* sz yez) (12)
2y kw

This expression, and hence g , are not modulated by the betatron motion.

v
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It is important that 8, be constant in z so that an electron can remain
nearly resonant with the ponderomotive potential well produced by the wiggler
field plus the laser electromagnetic field. The phase of an electron in the

ponderomotive potential well is often denoted by y, where2

v o= (k+k)z-oet+e (13)
k and w are the wavenumber and angular frequency of the laser electromagnetic
field, and ¢ is the phase of the electric field (see Sec. IV). Then, ignoring

¢ for the moment,

d k
a%““"w'T" (14)
o2
=k_____‘L_,
W 2Y2 2

averaged over a wiggle period. If 312 is not constant, electrons are

periodically pushed around in the ponderomotive well by their betatron motion.
This periodic pushing in ¥ does occur if electron motion in the wiggle

plane is confined by quadrupolar focusing, for which

n 2
XO = - kq XO
with k.2 = qufy = 55 Qu/ (15)
q oY z <oy -

mc

QO is the quadrupole strength (the field gradient), and Xg is the slowly
varying position of the guiding center of the electron's wiggle motion. The
combination of guiding center harmonic motion with wiggle motion produces

b K 2y2

02 1+ w2 cos sz . (16)

x =x_cos (kz+¢ ) -
B R
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Quadrupole focusing in x defocuses in y; instead of eg. {(10), we have

y =Y, cos (kez + ¢y) , (17)
with

"2 2 2

ky" = kBy - kq ) (18)

For 81'7 we now find
2

b k
2 0 2 2 9 2 2
31=—2_§[1+kw ys]"z (xe-ys)
Zykw
K 2 ~
q_ 2 . _ 2 .
+ 5 [ya sin 2 (sz + ¢y) x,~ sin 2 (qu + ¢q)] . (19)

The phases by and ¢q are arbitrary so that the z-dependent term in the
last square brackets of eq. (19) cannot, in general, be made to vanish.
Therefore, gjé-cannot be constant over a betatron period; the betatron
motion of an electron changes its phase in the ponderomotive potential well,
and can detrap the electron. A further discussion can be found in Ref. 2.

The importance of detrapping can be estimated by calculating the maximum

deviation in ¢, over a betatron period in x, (no y motion) from Eqs. (14) and

(19). At constant y:

2
K
apl=% 3 -x? 4. (20)
q

For the overall electron beam we can replace kqu2 by its rms value, to

obtain

kK
<AY> L oTFoe s (21)
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where €y is the unnormalized, rms emittance in the x-direction:

e, = k. <X > . (22)

In order for detrapping by betatron motion in quadrupole focusing to be

unimportant, we require

2) (the wiggler length) << =/k_.

1) %-ex « 1, or
Lw q

ITI. PARABOLIC POLE FACES

The detrapping described in Sec. II occurs because the longitudinal
velocity, B, » of an electron depends on the electron's phase in its betatron
orbit in x; e.g., near x = 0 the transverse velocity of an electron is larger
than near |x| = Xg» SO the longitudinal velocity must be smaller. This
variation in longitudinal velocity does not occur for betatron motion in y
because the transverse velocity of the wiggle motion increases when the
transverse velocity of betatron motion decreases, and vice versa.

We can circumvent the detrapping by betatron motion in x if the wiggle
motion, hence By, increases with | x| as well as with |y|; the | x | dependence
of B, also provides focusing in x. In this section we demonstrate that this

y
focusing, with no quadrupole focusing, keeps 8,

2 constant and therefore does

not affect the FEL resonance.

The focusing in x occurs for a different reason than the focusing in y
described in Sec. II. The y-focusing arises from the cross-product of the
wiggle motion x' [eq. (17)] with Bz [eq. (1)], averaged over a wiggler
period. Both x' and BZ have a sin sz dependence; their product has a non-

zero average value and produces an average force toward the x - z plane.
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The focusing in x, if By increases with |x |, is a consequence of the
larger acceleration by By, toward x = 0, at the outer extent (larger |[x|) of
the wiggle trajectory. The average force on an electron toward the y - z
plane is non-zero because of the gradient of By in x.

The focusing force in x follows immediately from a standard analysis of
motion in a rapidly oscillating force with a weak spatial gradient —- as
found, for example, in Ref. 6. The effect of the x-gradient of By on__
focusing in y is not so straightforward; nor is a demonstration that 812

remains constant. Therefore, we reanalyze the focusing in both x and y. We

can do this with the magnetic field obtained from

b
0 :
X = - F; cosh k x sinh k .y cos k z (23)

for which
bo ~ .
b = F; X kX sinh kxx sinh kyy cos sz

+ § ky cosh kxx cosh kyy cos sz (24)

-2 kw cosh kxx sinh kyy sin sz
This field is a vacuum solution of Maxwell's equations if

tk,T=k

2 2 2
Ky y w oo (25)

In going from the conventional wiggler field of eq. (1) to eq. (24), we
have effectively added a sextupole contribution: the difference of the

transverse fields, for small kxx and kyy, is

2
Abx = b0 kX Xy (26)
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kxzxz K 22 sz 2
Aby=b01+—7——+—i7— - by {1+
kx2 2 2
= by 5= (xX“ = ¥°) . (27)

The difference field is the standard expression for a sextupole.

Sextupole fields are well known to give second-order focusing, with the
transverse Lorentz force proportional to a second-order polynomial in x and
y. At first glance the focusing in x appears fundamentally different from the
focusing in y; however, as will be shown below, the cross term between wiggle
motion and guiding center motion of an electron in x gives a harmonic (first
order) focusing force on the electron's guiding center.

The harmonic focusing properties of an alternating sextupole component in
a wiggler have previously been derived by Luccio and Krinsky6 and Dattoli
and Renieri,7 in the context of transverse defocusing due to the finite
width of magnet pole faces.

We are interested in ;:E and the focusing averaged over a wiggle period,
so we examine the focusing by using an averaging method. We assume the posi-

tion r of an electron can be written
r=rtn (28)

where Il' = (xl', yl', 21') varies rapidly — on a wiggler wavelength,
a"d,fo' is constant over a wiggler wavelength, but does vary over a betatron
wavelength. o is the guiding center position of the electron, and g is

the wiggle trajectory.
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Furthermore, we will assume that the electron beam is small enough that
kxx and kyy are small, and relativistic enough that bolykw is even smaller, so
that an expansion in a small parameter is valid. If ¢ is the small parameter
of the expansion, then kxx and kyy are @ (ec) and bolykw is 0(em) for m > 2.
The restriction on m merely ensures that 1/y2 terms can be neglected with
respect to kxzx2 or kyzy2 terms. For the simulations described below,

e 0.1 and m = 2. This ordering is appropriate for the high current, high
emittance electron beam of an induction linear accelerator, but is not appro-
priate for an electron beam in a storage ring, where the focusing problem does

not, in general, arise.

The equations of motion for an electron are

.. . b . b

X =c [z ;1 -y ;5] ,
. b . b

.-_ _Z__ _{_

y =c [x ” z - ] (29)
. b . b

--— —x—-_ _l

z=cly - X . 1,

with b given by eq. (24). The dot denotes a time-derivative. The dominant

terms in the wiggle motion come from

.. . b

Xy = czq - (30)
from which we obtain

' by K, %o %yz wl

Xy = ¢ ?F; 1+ > + 5 sin sz (31)

through 6‘(54). Equation (31) describes the wiggle motion, which can be seen

to increase with both Xg and Yo
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The other component of the wiggle motion, 91, does not vanish; bx is not
zero so an equation analogous to eq. (30) could be written for }1. However,

Y1 contributes to focusing and to alz at much higher order than is retained in
eq. (31), and so we neglect 91 altogether.

To evaluate the focusing, we write (including only the dominant terms)

5

LN _ - _l
Xp = €Zg 3 (32a)
. b A
Y, - [Xl 2 -2 ] : (32b)
Y

The averages of bX and by alone do not vanish because of the variation of

bX and by with x:

2 2 2 2
S S T R P I L S L
0~ 0y 2 2
(33)
= czé EQ k 2 X~ X; COS k 2
0y P 071 W
or
-i = - CZbOZ k 2 Xn = czk 2 X 34
0 2, 2 "x "0~ gx 0 (34)
2y°k
W
after an average over a wiggle period.
In the same fashion, eq. (32b) yields
_yz_ﬁgf_kzy—_czk 2y . (35)
0 2Yka2 y ‘0~ gy ‘0 °

the focusing in y has been decreased by the pole face design because of the

iOE;/Y term in eq. (32b).
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In order to evaluate 312 we need to connect ib and }b to xo" and yo".

The only subtlety in making the connection can be seen from the identity
°i=(h2x"+;x' . (36)
0 0 o
the E'XO' term is not of higher order than the x," term although the (i)2
factor can be set to unity. The }.xo' term does not, however, contribute to

the focusing averaged over a wiggle period, so that we may write

2

Xg" = - ksx Xg o
) (37)
yoll = - kBy yo
From Equations (37),
Xq = Xg C€OS (ka z + ¢x) .
(38)
Yo = ¥ cos (ky 2% 9)
and so
2,2 2 .2 2
Xq /c” = ex Xg Sin (kaz + ¢x)
(39)
2,2 2 2 . 2
Yo Jc© = By Y~ sin (kByZ + ¢y)
For the wiggle motion
b 2
PRI [1+k2x2+x2y2y) . (40)
177 2%, x %o y Yo >
thus
— 2,2 °2,.2 c 2,2
B, =X jco + X0 fc™ + Yo /c
(41)
by 1+ k2x2ek2y2]
T2 2 x s y Y8
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This is, indeed, constant for an individual electron over a betatron orbit.
This constant of the (averaged) motion was also derived by Dattoli and

Renieri;7

their concern was with a defocusing sextupole component.

We can get an approximate idea of the shape of the magnet pole face
required to generate the focusing field of eq. (24) by the following
argument. Assume the field is shaped by steel pole faces (as in a "hybrid"
rare-earth cobalt and steel wiggler design)8 and that the permeability n » =
in the steel. At cos sz = 1, the steel pole faces should then follow a

curve of constant X :

cosh k x sinh kyy = Cq (42)

on the pole face.

The pole face then is described by the curve:

C
y(x) = —%— sinh_1 EE%F_F_Y R (43)
y X
or, approximately,
Co k 2x°
y(x) = 2 (1 - 2 ). (44)
y

This form for y(x) illustrates the approximately parabolic nature of the

curvature.

The curve y(x) for kx = ky = kw/\/z is shown in Fig. 1; in this case,
ka = kBy so the x focusing is sufficient to maintain a circular electron beam.
It is interesting to note from Fig. 1 that only a small curvature to the pole

faces is required to achieve a circular electron beam.
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IV. NUMERICAL SIMULATIONS OF FEL PERFORMANCE WITH WIGGLE PLANE FOCUSING

The effect of quadrupolar focusing on the performance of a high-gain,
tapered wiggler FEL was first realized when the LLNL 2D numerical simulation
code FRED2 was modified to include i) full betatron motion of the electrons,

ii) the treatment of linear wigglers, and iii) quadrupole focusing in the
wiggler plane. As mentioned in the introduction, the predicted performance of
a linear wiggler was found to be much poorer than a helical wiggler for the
same beam energy, current and emittance.

In its current version, the code follows 2000-4000 electrons within one
ponderomotive potential well as they move in y and ¥ (longitudinal phase space).
The equations that govern the motion in y and ¥ (averaged over a wiggler

period) are slightly extended versions of those derived in Ref. 1:

dy. a f
Hil =~ & t.B sin ¥, (45a)
i
de .
i k 2 2. 2 2
=k, - - (1+a, +y;%8 %, ~2afa cos v, +ar’) (45b)
i

where a, (r=0) = bol\/é kw for a linear wiggler, eg is the scaled electric

field strength, e = eES/\/E_mcz, a

field, and 8 2,

S = eS/k, k is the wavenumber of the laser

8 is the contribution of the betatron motion to 512. In the
code, the field quantities (including aw) are all treated as functions of the
electron's position (xi, Yi» Zi)’ and 812’3 is evaluated in the electron's
betatron orbit.

o; is the phase of the electron with respect to a plane electromagnetic
wave, propagating with phase velocity equal to ¢c. In terms of the phase in

the ponderomotive potential well, wi’ and the phase of the electric field ¢

[see below, eq. (51)]
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6. =V. - ¢ . (46)

The quantity fB in eq. (45) is a difference of Bessel functions3 and
differs from unity for a linear wiggler as a consequence of averaging over a
wiggler period. For a helical wiggler, fB = 1; for a linear wiggler
fo = JO(E) - Jl(g)
where (47)
a 2

W

£ = 2
2(1+aw )

The equations for the transverse motion are of the form

wo_ 2
X' = - kBX X;
(48)
no_ 2
y;' = - kBy Yi s

with ka and kBy functions of z and y in ways dependent on the specific kind

of focusing assumed. For the scheme described in Section III, k__ and kBy are

B X
given by Eqs. (34) and (35). For quadrupole focusing in the wiggle plane

(hence defocusing in y) ksx = kq from eq. (15) and kBy = kB from eq. (18).

For a helical wiggler

K =k = %0 . (49)
BX TBY 2y

The electron betatron motion is fully 3-dimensional. The laser field,
however, is assumed to be 2-dimensional; for the simulations described here,
the laser field is cylindrically symmetric, and the two dimensions are r and z.

The field is solved in the paraxial approximation.10 The electric

field — linearly polarized, for a linear wiggler —- is written
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i(kz-mt)]

Ex(x’yszst) = Re [éb(x,y,Z) e ] (50)

where & is a slowly varying, complex electric field amplitude: the equation

&z|ele? (51)

defines ¢, the phase of the electric field. The code can also simulate a
helical wiggler FEL; the modifications to the field equations are
straightforward.

With the slowly-varying amplitude and phase approximation, the wave

equation becomes

2E .
2 1 3" x _1( ikz-wt) . 3 2
Y Ex - 5~ = 5 [e (2ik =3 tVvT)EeH c.c.]
c at
(52)
4y 3
=7 3t %
C
In cylindrical symmetry
71 2 2 (53)

For the source term - the right-hand side of eq. (52) - we assume that

ik z - ot) contributes

only the Fourier component of Jx proportional to e
to the field evolution. Implicit is the approximation that the field changes
little over many optical wavelengths.

Defining,

e& i¢

m:el+iez=ese (54)

(the factor of V2 ensures that e and e, refer to rms values), and writing

Iy (oy,2) = - e 3" Vx, s(x - x;) &ly - y;) 8(z - z) (55)
i
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with

V?2a

W
Vi =€
Y3

cos k z: , (56)

eq. (52) becomes3

4wive a f _191
.o 9 2 . - wB I Z e _
(21k H"‘ Vl ) (e1 + 1e2) = T N : Y-i G(X - X.‘)G(_Y .Y1) (57)
1

Here I is the beam current and N the number of simulation particles; I/N is
therefore the current per particle. The field quantities € and e, are
both functions of x, y, and z.

To solve eq. (57) numerically, we integrate both sides over radial zones
of width ar(in general, ar varies with r). Then, at a radial grid point,

. -ie,
2iwe a f i
.3 2 . - wB I 1 e
(2ik 7z VL ) (ei * 1e2) - 4 N rar :E: Y
j

(58)
mc

where now the sum is only over the particles lying within the radial zone ar

around the grid point.

Equation (58) is solved in FRED using a finite element method, which
permits a unique weighting of particles to radial grid points.

We first present the results of three simulations for an FEL with a 25 m
wiggler driven by a 50 MeV induction linac. The three simulations differ only
by type of wiggler - a) helical, b) linear with wiggle plane focusing due to
parabolic pole faces and c) linear with external quadrupole focusing. In all
three cases, the wiggler is tapered in a, according to the usual self-design

1

procedure: 2 a design electron, in a circular orbit at rdesign’ is



- 20 -

maintained at a fixed y p = 0.35, by changing 3, as the electron is
decelerated. The other parameters for all three runs are listed in Table I.
In all three cases, the beam waist occurs 0.5 Rayleigh ranges before the

wiggler; the entering laser beam is diverging (we have found the FEL amplifier
to perform better for a diverging input beam than for a converging input beam,
for reasons beyond the scope of this paper). Figure 2 shows the calculated
laser power as a function of z in the wiggler; the third case (curve c) with
quadrupole focusing sufficient to keep the electron beam circular, performs
less than a third as well as the helical wiggler (curve a), and less than hailf
as well as the linear wiggler with parabolic pole faces (curve b). The reason
for the poor performance can be seen in Fig. 3; this is a plot of trapped
(- < v < =) electron fraction as a function of z for the three cases. The
linear wiggler with quadrupole focusing shows strong, steady detrapping
throughout the wiggler, with a very small final trapping fraction. The linear
wiggler with parabolic pole faces did not perform quite as well as the helical
wiggler; the Bessel function factor (fB =~ (0.83 initially) readily explains
the difference.

In the second set of simulations, we illustrate the effect of quadrupole
focusing on exponential gain, for a shorter wiggler (5 meters) driven by a
50 MeV induction linac. The properties of the electron and laser beams are

those listed in Table I, except the input laser power, P is only 1 MW.

in?
In these cases the Taser beam is focused at the entrance to the wiggler.
The wiggler is untapered. Fig. 4 shows the resulting laser power as a

function of z. The plot is semi-logarithmic to permit comparison of the

exponential gain. Curve (b) of Fig. 4 illustrates exponential gain in linear

wiggler with parabolic pole faces -- the gain of 5.4 dB m'1 is less than for
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the helical wiggler (6.7 dB m'l) by roughly the Bessel function factor. The
gain in a linear wiggler with quadrupole focusing, curve (c) of Fig. 4 is seen
to drop abruptly at 3 m, or roughly a quarter of a betatron wavelength. The

initial gain is ~ 5.4 dB m'l, as in Fig. 4b, but as the electron bunching is

dispersed by the betatron motion of the electrons, the gain drops to 3 dB m'l.
The output power after 5 m is an order of magnitude less than for a helical

wiggler, largely because of the debunching past 3 m.
V. NUMERICAL ORBIT CALCULATIONS

The simulations described in Sec. V use the transverse equations of
motion averaged over a wiggler period, eqs. (45a) and (45b), to calculate the
electron trajectories. The focusing and resonance properties of curved pole
faces are therefore built into the simulations, rather than appearing from the
exact solution to eq. (29). It is a simple matter to integrate the exact
equations of motion in the wiggler, eq. (29), to verify the properties derived
in Sec. III. We have done so, and present examples of the results here. It
is not a simple matter to incorporate the exact transport equations into our
FEL simulations. The FEL simulations utilize the averaged equations derived
in Ref. (1), and only the average YZBlZ appears in the d ¢ /dz equation,
eq. (45b). A careful numerical average of the exact trajectory for each
electron would therefore be needed.

In this section we examine the betatron orbits and the average B,
obtained by integrating eq. (29) with the magnetic field of eq. (24). For the

parameters of the third simulation described in Sec. V, eqs. (34) and (35)

predict a betatron wavelength of 8.8 meters. Figure 5 shows the orbits,
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projected on the x-y plane, of electrons with y = 100, in a constant wiggler
field of 2.4 kG. The calculation is carried out for half the predicted
betatron wavelength, i.e., 4.4 m. The nine plots in the figure are for
particles initialized in orbits that should be circular (first column),
elliptical (second column), or linear in y (last column), at maximum betatron
radii of 0.1 cm (top row), 0.2 cm (middle row), or 0.3 cm (bottom row). It is
clear that the qualitative properties of the orbits agree with analytical
calculation (e.g., those orbits that should be circular are, indeed, circu-
lar, with no unexpected transport resonances).

For the FEL resonance, the average of YZBLZ’ and hence the average of B, »
over a wiggler period is expected to be constant, eq. (41). We illustrate
this property of the orbits for the outermost three electrons [the bottom row
in Fig. 5] in Fig. 6, where we plot k (the laser wavenumber) times the de-
parture of z(t) from a straight line over the betatron period of the calcu-
lation. The plotted quantity is very nearly aV (eq. 13) for a resonant
electron, without an average over a wiggler period, but sampled once per
wiggler period to remove the rapid wiggle motion. The shift in y due to
betatron motion is tiny: less than 2.4-10'3 radians in all cases.

In demonstrating that B8, is constant over a betatron orbit, it is
necessary to choose the right endpoints for the orbit integrations. The
proper endpoints can be found from the analytical expression for the

perturbations to z(t):

. bk a’ k°
z,(t) = x Y coskz+ X Y _sin2kz . (59)
1 0 2 W 2 3 W
ka Y 8kw
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Both terms are rapidly oscillating, and average to zero over many wiggler

periods, but vanish together at

'" .
sz = (2n + 1) 5, N = 0,1 ...; (60)

the endpoints must be chosen at values of z that satisfy condition (60). End-
points which satisfy that condition were used in producing Fig. 6.

Fig. 7 is a similar plot when external quadrupole focusing is used to
keep the beam circular -- in this case, to give the particle orbits the same
eccentricity as previously. Strong betatron modulation, corresponding to a
shift in optical phase of # (1) radians, is apparent. The lack of this
modulation is the reason that curved pole faces should produce a more

efficient FEL.
VI. SUMMARY

Periodic sextupole focusing, easily provided by curved magnet pole faces
in the wiggler, can greatly enhance the performance of a free-electron laser
amplifier. Unlike quadrupole focusing, the periodic sextupole focusing does
not affect the relative phase of an electron's wiggle motion and the laser
electric field; periodic sextupole focusing therefore permits an electron beam
to bunch coherently more readily than does quadrupole focusing. We have
derived the resonance properties of periodic sextupole focusing, confirmed
them with numerical simulations, and illustrated their importance with two
simulations of induction-linac driven FELs.

I am happy to acknowledge useful conversations with W. M. Fawley,

K. Halbach, V. K. Neil, D. Prosnitz, A. M. Sessler and J. S. Wurtele. The

simulation code FRED is co-authored by W. M. Fawley.
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FIGURE CAPTIONS

An illustration of curvature of the steel pole faces in a hybrid
wiggler required to keep the electron beam circular; i.e., kBX = kBy'
Laser power as a function of distance z in the wigglers for the
three cases discussed in the text: a) a helical wiggler, b) a
Vinear wiggler with parabolically curved pole faces, and c¢) a linear
wiggler with quadrupole focusing strong enough to keep the electron
beam circular. The simulation parameters are listed in Table I.
Fraction of electrons trapped in the ponderomotive well, as a
function of z, for the three cases of Fig. 2.

Laser power as a function of z for 1 MW input power with an un-
tapered wiggler. The three cases are the three wiggler types of
Fig. 2.

Exact x-y electron orbits for nine electrons in a linear, untapered
wiggler with curved pole faces. The electron orbits were followed
for half a betatron period in z; plotted here are the projections of
the trajectories onto the x-y plane. The orbit types are circular
(1eft column), elliptical (center column) and linear in y (right
column); the maximum betatron radii are 0.1 cm (top row), 0.2 cm
(center row) and 0.3 cm (bottom row).

Deviation of the longitudinal position of the three electrons in

the bottom row of Fig. 5 from an exactly straight line (constant B,)
orbit, measured in units of radians of optical phase.

The same as Fig. 6 for electrons maintained in their orbits by

strong quadrupole focusing.
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Table I Tapered Wiggler Amplifier Simulation parameters

vy = 100 (electron Lorentz factor)
ey = 0.14 rad cm (normalized edge emittance for a parabolic beam
profile).
Pin = 800 MW (peak laser input power)
I =2 kA (electron beam current)
wy = 0.35 cm (input laser beam waist)
\, = 8cm (wiggler wavelength)

>
]

10.6 um (signal wavelength).
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